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Birds and gliders exploit warm, rising atmospheric currents (thermals)
to reach heights comparable to low-lying clouds with a reduced
expenditure of energy. This strategy of flight (thermal soaring) is
frequently used by migratory birds. Soaring provides a remarkable
instance of complex decision making in biology and requires a long-
term strategy to effectively use the ascending thermals. Furthermore,
the problem is technologically relevant to extend the flying range
of autonomous gliders. Thermal soaring is commonly observed in
the atmospheric convective boundary layer on warm, sunny days.
The formation of thermals unavoidably generates strong turbu-
lent fluctuations, which constitute an essential element of soaring.
Here, we approach soaring flight as a problem of learning to
navigate complex, highly fluctuating turbulent environments. We
simulate the atmospheric boundary layer by numerical models of
turbulent convective flow and combine them with model-free,
experience-based, reinforcement learning algorithms to train the
gliders. For the learned policies in the regimes of moderate and
strong turbulence levels, the glider adopts an increasingly conser-
vative policy as turbulence levels increase, quantifying the degree
of risk affordable in turbulent environments. Reinforcement learn-
ing uncovers those sensorimotor cues that permit effective control
over soaring in turbulent environments.
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Migrating birds and gliders use upward wind currents in the
atmosphere to gain height while minimizing the energy

cost of propulsion by the flapping of the wings or engines (1, 2).
This mode of flight, called soaring, has been observed in a variety
of birds. For instance, birds of prey use soaring to maintain an
elevated vantage point in their search for food (3); migrating
storks exploit soaring to cover large distances in their quest for
greener pastures (4). Different forms of soaring have been ob-
served. Of particular interest here is thermal soaring, where a
bird gains height by using warm air currents (thermals) formed in
the atmospheric boundary layer. For both birds and gliders, a
crucial part of the thermal soaring is to identify a thermal and to
find and maintain its core, where the lift is typically the largest.
Once migratory birds have climbed up to the top of a thermal,
they glide down to the next thermal and repeat the process, a
migration strategy that strongly reduces energy costs (4). Soaring
strategies are also important for technological applications, namely,
the development of autonomous gliders that can fly large distances
with minimal energy consumption (5).
Thermals arise as ascending convective plumes driven by the

temperature gradient created due to the heating of the earth’s
surface by the sun (6). Hydrodynamic instabilities and processes
that lead to the formation of a thermal inevitably give rise to a
turbulent environment characterized by strong, erratic fluctua-
tions (7, 8). Birds or gliders attempting to find and maintain a
thermal face the challenge of identifying the potentially long-
lived and large-scale wind fluctuations amid a noisy turbulent
background. The structure of turbulence is highly complex, with
fluctuations occurring at many different scales and long-ranged
correlations in space and time (9, 10). We thereby expect non-
trivial correlations between the large-scale convective plumes and
the locally fluctuating quantities. Thermal soaring is a particularly
interesting example of navigation within turbulent flows, because

the velocity amplitudes of a glider or bird are of the same order of
magnitude as the fluctuating flow they are immersed in.
It has been frequently observed and attested by glider pilots

that birds are able to identify and navigate thermals more accu-
rately than human pilots endowed with modern instrumentation
(11). It is an open problem, however, what sensorimotor cues are
available to birds and how they are exploited, which constitutes a
major motivation for the present study.
An active agent navigating a turbulent environment has to

gather information about the fluctuating flow while simultaneously
using the flow to ascend. Thus, the problem faced by the agent
bears similarities to the general problem of balancing exploration
and exploitation in uncertain environments, which has been well
studied in the reinforcement learning framework (12). The gen-
eral idea of reinforcement learning is to selectively reinforce ac-
tions that are highly rewarding and thereby have the reinforced
actions chosen when the situation reoccurs. The solution to a re-
inforcement learning problem typically yields a behavioral policy
that is approximately optimal, where optimality is defined in the
sense of maximizing the reward function used to train the agent.
The previous description suggests that reinforcement learning

methods are poised to deliver effective strategies of soaring flight.
Past applications are indeed promising, yet they have considered
the soaring problem in unrealistically simplified situations, with no
turbulence or with fluctuations modeled as Gaussian white noise.
Ref. 13 considered the learning problem associated with finding
the center of a stationary thermal without turbulence, and used a
neural-based algorithm to recover the empirical rules proposed
by Reichmann (14) to locate the core of the thermal. Other at-
tempts (15, 16) have used neural networks and Q-learning to find
strategies to center a turbulence-free thermal. Akos et al. (17)
show that these simple rules fail even in the presence of modest
velocity fluctuations modeled as Gaussian white noise, and express
the need for strategies that could work in realistic turbulent flows.

Significance
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effective at directing turbulent navigation.
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Here, we enforce realistic aerodynamic constraints on the
flight of gliders and train them in complex turbulent environ-
ments by using reinforcement learning algorithms. We show that
the glider finds an effective strategy for soaring, and we identify
sensorimotor cues that are most relevant for guiding turbulent
navigation. Our soaring strategy is effective even in the presence
of strong fluctuations. The predicted strategy of flight lends itself
to field experiments with remote-controlled gliders and to
comparisons with the behavior of soaring birds.

Models
We first describe the models used for the simulation of the at-
mospheric boundary layer flow, the mechanics of flight, and the
reinforcement learning algorithms that we have used. The next
section will then present the corresponding results.

Modeling the Turbulent Environment. Conditions ideal for thermal
soaring typically occur during a sunny day, when a strong tem-
perature gradient between the surface of the Earth and the top
of the atmospheric boundary layer creates convective thermals
(7, 8). The soaring of birds and gliders primarily occurs within
this convective boundary layer. The mechanical and thermal
forces within the boundary layer generate turbulence charac-
terized by strongly fluctuating wind velocities.
Key physical aspects of the flow in the convective boundary

layer are governed by Rayleigh–Bénard convection (see ref. 9 for
a review). The corresponding equations are derived from the
Navier–Stokes equations with coupled temperature and velocity
fields simplified using the Boussinesq approximation. The di-
mensionless Rayleigh–Bénard equations read as follows:

∂u
∂t

+ u ·∇u=−∇P+
�
Pr
Ra

�1=2

∇2u+ θẑ, [1]

∂θ
∂t

+ u ·∇θ=
1

ðPr RaÞ1=2
∇2θ, [2]

where u, θ, and P are the velocity, temperature, and pressure
fields, respectively. The vertical direction coincides with the z
axis. The temperature appears in the dynamics of the velocity
field as a buoyant forcing term. The equations contain two di-
mensionless quantities that determine the qualitative behavior of
the flow: the Rayleigh number, Ra, and the Prandtl number, Pr.
When Ra is beyond a critical value ∼ 103, the thermally gener-
ated buoyancy drives the flow toward instability. In this regime,
the flow is characterized by large-scale convective cells and turbu-
lent eddies at every length scale. In the atmosphere, the Rayleigh
number can reach up to Ra = 1015 to 1020. In such high-Rayleigh
number regimes, the flow is strongly turbulent and numerical sim-
ulations of convection in the atmosphere are thus plagued by the
same limitations of simulating fully developed turbulent flows. We
performed direct numerical simulations of Rayleigh–Bénard con-
vection at Ra = 108 using the Gerris Flow Solver (18) (see Sup-
porting Information for more details about the grid and the
numerical scheme). Our test arena is a 3D cubical box of side
length 1 km in physical units. We impose periodic boundary con-
ditions on the lateral walls and no-slip on the floor and the ceiling
of the box. The floor is fixed at a high temperature (which is
rescaled to θ= 1), and the ceiling is fixed at θ= 0.
A small, random perturbation in the flow quickly leads to an

instability and to the formation of coherent thermal plumes
within the chamber. Snapshots of the velocity and temperature
fields at the statistically stationary state are shown in Fig. 1A. The
statistical properties of the flow are consistent with those observed
in previous works (19, 20), particularly the Nusselt number (which
measures the ratio of convective to conductive heat transfer) and
the mean temperature and velocity field profiles (Fig. S1).

To test the robustness of our learned policies of flight with
respect to the modeling of turbulence, we also considered an
alternative to the Rayleigh–Bénard flow. Specifically, we con-
sidered a kinematic model of turbulence that extends the one in
ref. 21 to the inhomogeneous case relevant for the atmospheric
boundary layer (Methods). Results for the kinematic model
confirm the robustness of our conclusions and the learned policy
has similar features in both flows (Supporting Information and
Figs. S2–S4). Below, we shall focus on the simulations of the
Rayleigh–Bénard flow described above.

Glider Mechanics. A bird or glider flying in the flow described
above with a fixed, stretched-out wing is safely assumed to be in
mechanical equilibrium, except for centripetal forces while turning
(22, 23). A glider with weight W traveling with velocity v experi-
ences a lift force L perpendicular to its velocity and a drag force D
antiparallel to its velocity (see Fig. 1C for a force body diagram).
The glider has no engine and thus generates no thrust. The
magnitudes of the lift and the drag depend on the speed v, the
angle of attack α, the density of air ρ and the surface area S of
the wing as follows: L= ð1=2ÞρSv2CLðαÞ and D= ð1=2ÞρSv2CDðαÞ.
The glide angle γ, which is the angle between the velocity and its
projection on the horizontal, determines the ratio of the climb rate
vcð<0Þ and the horizontal speed v⊥. Balancing the forces on the
glider, and accounting for the centripetal acceleration, the velocity
of the glider and its turning rate are obtained as follows:

tan  γ =
−vc
v⊥

=
D

L  cos  μ
=

CDðαÞ
CLðαÞcos  μ; [3]

y
::
= g  cos  γ   tan  μ; v2 =

2mg  sin  γ
ρSCDðαÞ . [4]

Here, y
::
is the centripetal acceleration. The ratio mg=S is called

the wing loading of the glider (22). The kinematics of a glider is
therefore set by the wing loading and the dependence of the lift
and the drag coefficients on the angle of attack. The general
features of the lift and drag coefficient curves for a typical sym-
metric airfoil are described in ref. 24; the resulting dependence
of the velocity on the angle of attack is shown in Fig. 1B. The
glider can be maneuvered by controlling the angle of attack,
which changes the speed and climb rate of the glider, or by
banking the glider to turn.

The Learning Algorithm. To identify effective strategies of soaring
flight in turbulent flows, we used the reinforcement learning al-
gorithm state–action–reward–state–action (SARSA) (12). Histor-
ically, the algorithm was inspired by the theory of animal learning,
and its model-free nature allows for learning previously unknown
strategies driven by feedback on performance (25).
Reinforcement learning problems are typically posed in the

framework of a Markov decision process (MDP). In an MDP,
the agent traverses a state space with transition probabilities that
depend only on the current state s and the immediate next state
s′, as for a Markov process. The transition probabilities can be
influenced by taking actions at each time step. After every action,
the agent is given some reward rðs, s′, aÞ, which depends on the
states s and s′ and the chosen action a. The ultimate goal of
reinforcement learning algorithms is to find the optimal policy
πp, that is, to find the probability of choosing action a given the
state s. The optimal policy maximizes for each state s the sum of
discounted future rewards Vπas ðsÞ= hr0i+ βhr1i+ β2hr2i+ . . .,
where hrii is the expected reward after i steps, β is the discount
factor (0≤ β1), and the sum above obviously depends on the
policy πas . When β is close to zero, the optimal policy greedily
maximizes the expected immediate reward, leading to a purely
exploitative strategy. As β gets closer to unity, later rewards
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contribute significantly and more exploratory strategies are
preferred.
The SARSA algorithm finds the optimal policy by estimating

for every state–action pair its Q function defined as the expected
sum of future rewards given the current state s and the action a.
At each step, the Q function is updated as follows:

Qðs, aÞ→Qðs, aÞ+ ηðr+ βQðs′, a′Þ−Qðs, aÞÞ, [5]

where r is the received reward and η is the learning rate. The
update is made online and does not require any prior model of
the flow or the flight. This feature is particularly relevant in
modeling decision-making processes in animals. When the algo-
rithm is close to convergence, the Q function approaches the
solution to Bellman’s dynamic programming equations (12).
The policy πas , which encodes the probability of choosing action
a at state s, approaches the optimal one πp and is obtained from
the Q function via a Boltzmann-like expression:

πas ∝ exp
�
−Q̂ðs, aÞ�τtemp

�
, [6]

Q̂ðs, aÞ= maxa′Qðs, a′Þ−Qðs, aÞ
maxa′Qðs, a′Þ−mina′Qðs, a′Þ. [7]

Here, τtemp is an effective “temperature”: when τtemp � 1, ac-
tions are only weakly dependent on the associated Q function ;
conversely, for τtemp small, the policy greedily chooses the action
with the largest Q. The temperature parameter is initially chosen
large and lowered as training progresses to create an annealing
effect, thereby preventing the policy from getting stuck in local
extrema. Parameters used in our simulations can be found in
Table S1.

In the sequel, we shall qualify the policy identified by SARSA
as optimal. It should be understood, however, that the SARSA
algorithm (as other reinforcement learning algorithms) typically
identifies an approximately optimal policy and “approximately”
is skipped only for the sake of conciseness.

Results
Sensorimotor Cues and Reward Function for Effective Learning. Key
aspects of the learning for the soaring problem are the sensori-
motor cues that the glider can sense (state space) and the choice
of the reward used to train the glider to ascend quickly. As the
state and action spaces are continuous and high-dimensional, it is
necessary to discretize them, which we realize here by a standard
lookup table representation. The height ascended per trial,
averaged over different realizations of the flow, serves as our
performance criterion.
The glider is allowed control over its angle of attack and its

bank angle (Fig. 1B). Control over the angle of attack features
two regimes: (i) at small angles of attack, the horizontal speed is
large and the climb rate is small (the glider sinks quickly); (ii) at
large angles of attack but below the stall angle, the horizontal
speed is small, whereas the climb rate is large. The bank angle
controls the heading of the glider, and we allow for a range of
variation between −15° and 15°. Exploring various possibilities,
we found that three actions are minimally sufficient: increasing,
decreasing, or preserving the angle of attack and the bank angle.
The angle of attack and bank angle were incremented/decre-
mented in steps of 2.5° and 5°, respectively. In summary, the
glider can choose 32 possible actions to control its navigation in
response to the sensorimotor cues described hereafter.
Our rationale in the choice of the state space was trying to

minimize biological or electronic sensory devices necessary for
control. We tested different combinations of local sensorimotor

A

C z

y

Lift L

z

x

Lift L
Drag D

velocity direction

wing direction

bank angle

glide angle
angle of attack

B

D

Fig. 1. Snapshots of the vertical velocity (A) and the temperature fields (B) in our numerical simulations of 3D Rayleigh–Bénard convection. For the vertical
velocity field, the red and blue colors indicate regions of large upward and downward flow, respectively. For the temperature field, the red and blue colors
indicate regions of high and low temperature, respectively. Notice that the hot and cold regions drive the upward and downward branches of the convective
cell, in agreement with the basic physics of convection. (C) The force-body diagram of flight with no thrust, that is, without any engine or flapping of wings.
The figure also shows the bank angle μ (blue), the angle of attack α (green), and the glide angle γ (red). (D) The range of horizontal speeds and climb rates
accessible by controlling the angle of attack. At small angles of attack, the glider moves fast but also sinks fast, whereas at larger angles, the glider moves and
sinks more slowly. If the angle of attack is too high, at about 16°, the glider stalls, leading to a sudden drop in lift. The vertical black dashed line shows the
fixed angle of attack for most of the simulations (Results, Control over the Angle of Attack).
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cues that could be indicative of the existence of a thermal. These
were the vertical wind velocity uz, the vertical wind acceleration
az, torques τ, the local temperature θ, and their 16 possible
combinations. Namely, if u denotes the local wind speed, we
define the wind acceleration as az = ðuðtÞz − uðt−1Þz Þ=Δt and the
“torques” as τ= ðuz+ − uz−Þl, where uz+ and uz− are the vertical
wind velocities at the left and the right wing, l is the wingspan of
the glider, and Δt is the step used for time discretization (see
below). After experimentation with various architectures, we
found that a lookup table structure with three states per ob-
servable, corresponding to positive high, negative high, and small
values, ensures good performance. The chosen thresholds, athreshz
and τthresh, that demarcate the large and small values in our
scheme are listed in Table S1.
As for the reward function, we found that a purely global re-

ward, that is, awarded at the end of a trial without any local
guidance, does not propagate easily to early state–action pairs
for realistically long trials. Eligibility traces (12), which maintain
a memory of past state–action pairs and their rewards, did not
alleviate the issue. For gliders or migrating birds, a fall can be
extremely disadvantageous, and we account for this by having a
glider that touches the surface receive a large negative reward as
a penalty. After a broad exploration of various choices, we
heuristically found that best soaring performances are obtained
by a local-in-time reward that linearly combines the vertical wind
velocity and the wind acceleration achieved at the subsequent
time step, that is, R= uz +Caz (see Table S1 for the chosen
value). We observe that performance does not change signifi-
cantly for a wide range of values of C.

Flight Training. The glider is first trained on a set of trials and its
performance is then tested on 500 trials. Trials consist of in-
dependent statistical realizations of the turbulent flow. The
glider flight is discretized by time steps Δt = 1 s, which is an
estimate for the control times of the glider and the timescales of
the turbulent eddies at the size of the glider. Each trial lasts for
2.5 min, which is roughly one-half the relaxation time of the
large-scale convective flow at steady state. The duration captures
the order of magnitude of the typical time, ∼ 10 min, for birds to
reach the base of the clouds.
The velocity relative to the ground of the glider is u+ v, where

u and v are the contributions due to the wind and the glider
velocity, respectively. If urms is the root-mean-squared speed of
the flow and vglider is the typical airspeed of the glider, we in-
troduce their dimensionless ratio ûrms = urms=vglider. At small ûrms,
fluctuations are weak. Conversely, at large ûrms, the glider has
less time to react to rapidly changing velocities; that is, the en-
vironment is strongly fluctuating. Moreover, in that regime, the

glider is carried away by the flow and the amount of control the
glider has over its trajectory is reduced. We expect that the policy
of flight learned by the glider will differ between the regimes of
weak and strong fluctuations.

Learning in Different Flow Regimes. A qualitative sense of the ef-
ficiency of the training in a fluctuating regime is illustrated in
Fig. 2. The trajectories go from random paths to the spirals that
are characteristic of the thermal soaring flights of birds and
gliders. Fig. 3A quantifies the significant improvement in per-
formance due to training and shows that training for a few
hundred trials suffices for convergence with negligible overfitting
for larger training sets. To compare performance in flows of
different mean speeds, we train and test gliders in flows with
varying urms. Fig. 3B shows the gain in height as a function of
ûrms. As expected, we observe two regimes: (i) for weak and
moderate fluctuations, ûrms K 1, the gain in height follows a
rapidly increasing trend; (ii) for strong fluctuations, ûrms J 1,
gains still increase but more slowly. Because the ascended height
depends on the flow speed, Fig. 3B also shows the soaring effi-
ciency χ, defined as the difference between ΔhðûrmsÞ and Δhð0Þ
divided by wrmsΔT, where wrms is the rms vertical speed of the flow
and ΔT = 150 s is the duration of a trial (Supporting Information and
Fig. S1 for the value of wrms). If the glider did not attempt to se-
lectively find upward currents, χ would vanish, whereas χ = 1 cor-
responds to a glider perfectly capturing vertical currents. As the flow
speed increases, the efficiency shows a downward trend that reflects
the increasing difficulty in control due to higher levels of fluctuations.
The performance of different gliders soaring simultaneously

within the same flow does not vary significantly, indicating that
an ensemble of gliders learn a uniquely optimal policy. The per-
formance over different realizations for a single glider varies
wildly, with a SD of the final height of the same magnitude as the
final height itself when ûrms ≈ 1. Despite this wide variation, the
number of failures (i.e., the glider touches the ground) always
decreases rapidly to almost zero with the number of training trials.

Role of Wind Acceleration and Torques. Our learning procedure
allows us to test the possible local sensorimotor cues that give
good soaring performance. For each cue, we define a mean level
and upper and lower thresholds symmetrically around the mean
value. The performance was found to be largely independent of
the chosen thresholds.
In Fig. 3C, we show a comparison between the performance of

a few different combinations of the cues. We found that the
pairing of vertical wind acceleration and torques, gauged in
terms of the average height ascended per trial, works best (re-
sults in Fig. 3 A and B are obtained using this pair). Intuitively,

Fig. 2. Typical trajectories of an untrained (A) and a trained (B) glider flying within a Rayleigh–Bénard turbulent flow, as shown in Fig. 1. The colors indicate
the vertical wind velocity experienced by the glider. The green and red dots indicate the start and the end points of the trajectory, respectively. The untrained
glider takes random decisions and descends, whereas the trained glider flies forming the characteristic spiraling patterns in regions of strong ascending
currents, as observed in the thermal soaring of birds and gliders (see, e.g., figure 2 in ref. 11).
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the combination of vertical wind acceleration and torques pro-
vides information on the gradient of the vertical wind velocity in
two complementary directions, thus allowing the glider to decide
between turning or continuing along the same path. Conversely,
the vertical wind velocity does indicate the strength of a thermal,
but it does not guide the glider to the core of the thermal. The
pair acceleration and torque allows the glider to climb the thermal
toward the core and also detect the edge of a thermal so that the
glider can stay within the core. The resulting pattern within a
thermal is a spiral that occurs solely from actions based on local
observables and minimal memory use. Temperature fails to im-
prove performance, which could be intuited as the temperature
field is highly intermittent and is itself a convoluted function of
the turbulent velocity (26, 27).

Control over the Angle of Attack. Fig. 3C shows that control over
the angle of attack does not influence significantly the performance
in climbing an individual thermal. The angle of attack should play
an important role, however, in other situations, namely, during
cross-country races or bird migration, where gliders need to cover
large horizontal distances and control over the horizontal speed
and sink rate is needed (11, 28, 29). To verify this expectation, we

considered a simple test case of a glider traversing, without
turning, a 2D track consisting of a series of ascending or
descending columns of air with turbulence added on top. We
found that control over the angle of attack indeed improves the
gain in height (Supporting Information and Fig. S5) and the glider
learns to increase its pace during phases of descent while slowing
down during periods of ascending currents. We expect that the
differing roles of the angle of attack for soaring between and
within thermals holds true for birds as well, a prediction that can
be tested in field experiments.
In the sequel, we shall analyze the soaring in a single thermal.

We fix then for simplicity the angle of attack at ∼ 9° (where the
climb rate is the largest; Fig. 1B), and the pair acceleration–
torque as sensorimotor cues sensed by the glider (Fig. 3C).

Dependence on the Temporal Discounting. The performance of the
glider as a function of the temporal discount factor β is shown in
Fig. 3D. The gain in height increases as the effective time hori-
zon ð1− βÞ−1 grows, reaches a maximum at ≈ 100 s, and then
slowly declines. The best time horizon is comparable with the
timescale of the flow patterns at the height reached by the glider.
This demonstrates that long-term planning is crucial for soaring

A B

DC

Fig. 3. The soaring performance of flight policies and the sensed sensorimotor cues. (A) The learning curve for two different turbulent fluctuation levels, as
quantified by the ratio ûrms of the rms variations of the flow and the airspeed of the glider. The two values ûrms = 0.5 (red) and ûrms =1.5 (green) show the
increase in the average ascended height per trial with the size of the training set. The training saturates after ≈ 250 trials. The green and red dotted lines
show the learning curves of 20 individual gliders. (B) The panel shows the average height ascended for different ûrms (blue). We also plot the soaring efficiency
χðûrmsÞ as defined in the text. The efficiency takes into account the stronger ascending velocities that are a priori available when ûrms increases. The difficulty is
of course that higher velocities are also associated to stronger fluctuations. The efficiency indeed shows a downward trend that reflects the increasing
difficulty in control as fluctuations increase. (C) A comparison of the average gain in height for different combinations of sensorimotor cues (vertical ac-
celeration az and velocity vz, torque τ and temperature θ) sensed by the glider. Vertical wind velocities and temperature also give minor contributions
compared with the performance of vertical wind acceleration and torque. The third bar includes the performance when the control of the angle of attack α is
included as a possible action. The contribution is marginal and the convergence is actually slowed down so that the final performance after a finite number of
training trials is slightly inferior to the first bar. The error bars show the 95% confidence interval of the average gain in height. (D) The relative improvement
in height gained with respect to a greedy strategy, that is, with discount factor β= 0. A reinforcement learning policy that is not greedy, that is, β≠ 0, has
significantly better performance, demonstrating that long-term planning improves soaring. For A, B, and D, the error bars are smaller than the symbol size
and are not shown.
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and the importance of a relatively long-term strategy to effec-
tively use the ascending thermals.

Optimal Flight Policy. The Q function learned by the SARSA al-
gorithm defines the optimal state–action policy via Eq. 6. An optimal
policy associates the choice of an action to the pair acceleration–
torque ðaz, τÞ. The optimal action is chosen among the three options:
(i) increase the bank angle μ by 5°; (ii) decrease μ by 5°; (iii) keep μ
unchanged. In Fig. 4A, we show a comparison between the policy for
the two regimes of weak and strong fluctuations.
The policies in Fig. 4 have a few intuitive features that are

preserved at different flow speeds. For instance, when the glider
experiences a negative wind acceleration, the optimal action is to
sharply bank toward the side of the wing that experiences larger
lift. When the glider experiences a large positive acceleration
and no torque, the glider continues flying along its current path.
Despite these similarities, the policies exhibit marked differ-
ences, which we proceed to analyze.
For each az, τ pair, it is useful to consider its preferred angles

(the green circles in Fig. 4), that is, those angles that the policy
leads to if the pair az, τ is maintained fixed. We observe that the
preferred bank angles of gliders trained in a strong flow are
relatively moderate, and the policy in general is more conser-
vative. Consider, for instance, the case of zero torque and zero
acceleration (column 5 of the policies in Fig. 4). The optimal
bank action in the weak flow regime is to turn as much as possible,

in contrast to the policy in the strong flow regime, which is to not
turn. Another interesting qualitative difference is when the glider
experiences negative acceleration and significant torque on the
right wing (column 1 of the policies in Fig. 4). In the weak flow
regime, if the glider is already banked to the left (negative bank
angles), the policy is to bank further left to complete a full circle.
In the strong flow regime, the policy is once again more con-
servative, preferring to not risk the full turn.
A policy becoming more conservative and risk averse as fluc-

tuations increase is consistent with the balance of exploration
and exploitation (12). In a noisy environment, where a wrong
decision can lead to highly negative consequences, we expect an
active agent to play safe and tend to gather more information
before taking action. In a turbulent environment, we expect the
glider to exploit (avoid) only significantly large positive (nega-
tive) fluctuations along its trajectory while filtering out transient,
small-scale fluctuations. In the next subsection, we shall further
confirm this expectation by tracking the changes in the optimal
policy with the flow speed and extracting a few general principles
of the optimal flight policy.

Optimal Bank Angles. To quantify the description of the optimal
policy shown in Fig. 4A, we consider the distributions of the bank
angle μ given the acceleration az and torque τ in the previous
time step, that is, Prðμðt+1ÞjaðtÞz , τðtÞÞ. We define the optimal bank
angle as follows:

A B

C

Fig. 4. Policies of flight for different levels of turbulent fluctuations. (A) ûrms = 0.5 and (B) ûrms = 1.5, with ûrms defined as in Fig. 3. The plot shows the optimal
action on the bank angle μ upon receiving a given sensorimotor cue of vertical acceleration and torque ðaz, τÞ. Here +,−, and 0 denote positive high, negative
high, and low values for az and τ as discussed in the text. The red upward arrow, blue downward arrow, and orange square indicate that the optimal policy is
to increase, decrease, or maintain the same bank angle, respectively. A few instances of the preferred angles that one eventually reaches by maintaining
ðaz, τÞ fixed are denoted by green circles. Note that the policy at ûrms = 1.5 is more conservative compared with that at 0.5; namely, preferred angles are
smaller for the former. (C) A heat map showing the optimal bank angle (Eq. 8) at a particular ûrms and âz with τ< 0. The red region corresponds to significantly
large fluctuation that require a strong bank, whereas cues in the blue regions are filtered out. The acceleration âz is normalized by vglider=Δt, where Δt = 1 s
and vglider is the speed of the glider.
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μoptðaz, τÞ= arg max
μt+1

Pr
�
μt+1jatz, τt

�
, [8]

and we are interested in the variations of the optimal bank angle
with the turbulence level ûrms. We use a bicubic spline interpo-
lation to smooth the probability distributions and thereby obtain
smoothened values for μopt.
To create a higher resolution in az, we expand our state space

by creating finer divisions in the vertical wind accelerations. Note
that the performance with an expanded state space is not sig-
nificantly better than the one with just three states. Fig. 4 shows a
heat map of the optimal bank angles at different az < 0 and τ< 0.
For every az, μopt drops from the maximum value of 15∘ to a value
closer to zero as ûrms increases. Note that, because τ< 0, the
optimal angles are biased toward being positive. We define a
threshold on the optimal bank angles at 12.5°, which empirically
corresponds to the point where the optimal bank angles drop
most rapidly as ûrms increases. Above (below) the threshold, the
angles are considered “high” (“low”). The threshold on the op-
timal bank angle defined a cutoff on −az and thereby an effective
“fluctuation filter.”
We interpret the fluctuation filter above as follows: at a par-

ticular ûrms, if the glider encounters a fluctuation with −az above
the cutoff, the glider interprets the fluctuation as significant, that
is, as the large-scale downward branch of a convective cell, and
banks away. Conversely, fluctuations below the cutoff are ignored.
In other words, the cutoff defined above gives the level that
identifies significantly large fluctuations that require action. Sim-
ilar behaviors are obtained for (az < 0, τ= 0Þ and τ> 0 is symmetric
with respect to the case τ< 0 just discussed. Conversely, for az > 0,
the glider maintains a bank angle close to zero unless it experi-
ences an exceptionally large torque. These simple principles are
the key for effective soaring in fluctuating turbulent environments.

Discussion
We have shown that reinforcement learning methods cope with
strong turbulent fluctuations and identify effective policies of
navigation in turbulent flow. Previous works neglected turbu-
lence, which is an essential and unavoidable feature of natural
flow. The learned policies dramatically improve the gain of height
and the rapidity of climbing within thermals, even when turbulent
fluctuations are strong and the glider has reduced control due to
its being transported by the flow.
We deliberately kept simple the sensorimotor cues that the

glider can sense to guide its flight. In particular, possible cues
were local in space and time for two reasons: keep the closest
contact with what birds are likely to sense and minimize the
mechanical instrumentation needed for the control of autono-
mously flying vehicles. In the same spirit, we kept simple the
parametrization of the learned policies, by using a relatively
coarse discretization of the space of states and actions.
Turbulence has indeed a major impact upon the policy of

flight. We explicitly presented how the learned policies of flight
modify as the level of turbulence increases. In particular, we
quantified the increase of the threshold on the cues needed for
the glider to change its parameters of control. We also discussed
the simple principles that the policy follows to filter out tran-
sient, small-scale turbulent fluctuations, and identify the level of
the sensorimotor cues that requires actions that modify the pa-
rameters of flight of the glider.
We found that the bank angle of the glider is the main control

for navigation within a single thermal, which is the main interest of
the current work. However, we also considered a very simplified
setting mimicking the flight between multiple thermals, and there
we found that control of the angle of attack is important. Inter-
thermals flight is of major interest for birds’ migration and glider
pilots. MacCready (28) determined the optimal speed to maximize

the average cross-country speed as a function of the glider’s rate
of sink and the velocity of ascent within the thermals. The
resulting instrument (the so-called MacCready speed ring) is
commonly used by glider pilots with various supplementary
empirical prescriptions, which typically tend to be risk averse.
MacCready’s prediction was also recently compared with the be-
havior of various birds (29) along their thermal-dense migratory
routes. Their behavior was found to differ from the prediction;
namely, a more conservative policy was observed, with slower but
less sinking paths that reduce the probability of dramatic losses of
height. One possible cause for more conservative policies relates
to the uncertainties on the location and the velocity of ascent
within the thermals, which was previously considered in the liter-
ature (30). Another possible reason suggested by our results is
turbulence along the interthermal paths, which is neglected in
MacCready’s and subsequent arguments. Our methodology can be
adapted to realistically model interthermal conditions, and future
work will assess the role of turbulence in the policy of interthermal
flight.
We identified torque and vertical accelerations as the local

sensorimotor cues that most effectively guide turbulent naviga-
tion. Temperature was specifically shown to yield minor gains.
The robustness of our results with respect to the modeling of
turbulence strongly suggests that the conclusion applies to nat-
ural conditions; a sensor of temperature could then be safely
spared in the instrumentation for autonomous flying vehicles.
More generally, it will be of major interest to implement our
predicted policy on remotely controlled gliders and test their
flight performance in field experiments. Thanks to our choices
discussed above, the mechanical instrumentation needed for
control is minimal and can be hosted on commercial gliders
without perturbing their aerodynamics. Finally, our flight policy
and the nature of the sensorimotor cues that we identified,
provide predictions that can be compared with the behavior of
soaring birds and could shed light on the decision processes that
enable them to perform their soaring feats.

Methods
Our kinematic model of turbulence extends the one in ref. 21 to the in-
homogeneous case relevant for the atmospheric boundary layer. We can
thereby statistically reproduce the Kolmogorov and Richardson laws (10) and
the velocity profile of the atmospheric boundary layer (6). The atmospheric
boundary layer on a sunny day extends to an inversion height zi ∼ 1 km and
mainly consists of two layers—the free convection layer, extending up to 0.1zi,
and the mixed layer (6). The rms of velocity fluctuations varies with the height z
as ÆδðukinÞ2ðzÞæ∼ z2=3 in the free convection layer and is statistically constant in
the mixed layer. To reproduce these statistics, we decomposed the velocity field
at height z into contributions from fields of different integral length scales ln:

ukinðx⊥, z, tÞ=
X
ln>z

  cnukinðx⊥, z, tjlnÞ, [9]

where x⊥ are the two horizontal components of the position. The velocity
field at each length scale ℓn is specified in spatial wavenumbers k as follows:

ukinðx⊥, z, tjlnÞ=
Z

ûkin
n ðk, tÞeik.xd3k, [10]

where the individual Fourier components ûkin
n ðk, tÞ are modeled as a Ornstein–

Uhlenbeck process (21). The corresponding diffusion constant is set such that
the spatial energy spectrum follows the Kolmogorov five-thirds law
EðkÞ∼ k−5=3, where k= jkj. The power law energy spectrum gives rise to long-
range spatial correlations with fluctuations at every length scale up to ln. The
relaxation time of each mode is given by the Kolmogorov scaling τk ∼ k−2=3 (10).
The coefficients cn and the integral length scales ln are chosen to reproduce the
velocity profile of the boundary layer (see Supporting Information for details).
We accounted for the mean ascending current within the thermals by super-
posing a Gaussian-shaped mean vertical velocity on top of the fluctuations.
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